
A Reprint from the

Applications of Artificial Intelligence 111

April 1-3, 1986
Orlando, Florida

Fast path planning in unstructured, dynamic, 3-0 worlds

Martin Herman
Robot Systems Division

National Bureau of Standards, Gaithersburg, Maryland 20899

01986 by the Society of Photo-Optical Instrumentation Engineers
Box 10, Eellingham, Washington 98227 USA. Telephone 206/676 -3290

Fast Path Planning in Unstructured,
Dynamic, 3-D Worlds

Martin Herman

Robot Systems Division
National Bureau of Standards

Gaithersburg, MD 20899

ABSTRACT

issues dealing with fast motion planning in
unstructured, dynamic 3-D worlds are discussed,
and a fast path planning system under development
at NBS is described. it is argued that an octree
representation of the obstacles in the world leads to
fast path planning algorithms. The system we are
developing performs the path search in an octree
space, and uses a hybrid search technique that com-
bines hypothesize and test, hill climbing, A ', and
multiresolution grid search.

1. Introduction

In order to perform collision -free robot path planning, the
following kinds of knowledge about the robot's world are
relevant: (1) descriptions of the objects in the world, (2) the
positions and orientations of these objects at some point in
time, and (3) the motions of these objects as a function of
time. In this section, we introduce some issues dealing with
path planning in unstructured, dynamic environments.

A program that automatically generates collision-free
paths must be able to represent the robot's world for two pur-
poses, for accumulating the world description from outside
sources, and for performing the path search.

The representation in which the world description is
accumulated is called the worId repreeentation. This descrip
tion may be obtained from a combination of various sources,
including manual input, a priori object data bases, sensory
recognition modules, and sensory description modules. Com-
mon forms for such representations are surfacebased CAD
models [Baer e t al. 79, Requicha 801, swept volumes [Brooks
811, cellular arrays [Srihari 811, octrees [Meagher 82, Jackins &
Tanimoto 801, and analytic surface equations.

The representation in which the search for paths is per-
formed is called the search space representation. It may be
either the same as or different from the world representation.
Examples of search space representations that are usually
different from world representations are Configuration spaces
[Lozano -Perez 811, Voronoi-based spaces [Canny 851, general -
ized cylinder free spaces [Brooks 831, and medial axis free
spaces [Ruff & Ahuja 841. If the search space representation is
different from the world representation, a procedure that maps
the world to the search space is required.

The world may be either static or dynamic. A dynamic
world is one in which the poses of objects change over time,
while a static world is onc in which only the pose of the robot

changes. In order to find and maintain cohion -free trajec-
tories in a dynamic world, the search space must be updated
as changes occur. It is usually more efficient to perform this
updating incrementally, rather than regenerating the whole
search space whenever a small part of it has changed.

An unstructured world is one in which there are unk-
nown objects, unknown poses of objects, or unknown motions
of objects. In such cases, descriptions of portions of the world
may have to be obtained using sensory processing before path
planning can be performed.

Because path planning in unstructured, dynamic worlds
involves situations which are not known beforehand, the path
planning must be done online. This means that algorithms for
acquiring the world description from sensors, for mapping the
world description into a search space description (if the two
are not the same), and for performing the path search must be
fast.

2. Previous Work
In this paper, we consider some issues related to fast path

planning in an unstructured, dynamic, 3-D environment. The
term "fast" is used informally here to specify a practical time
frame in which the robot can plan and execute motions. This
paper suggests ways of obtaining speed, but it is not yet clear
how fast the final algorithms will be.

Most previous path planning algorithms have operated in
two dimensions, often for mobile robot applications. Many of
these assume that rotation of the robot can be ignored, and
consider translation only. The speed of these algorithms would
probably decrease dramatically i f applied to the extra degrees
of freedom in three-dimensional motion.

Many of the planning algorithms developed for 3-D
motion are inadequate for our purposes. The configuration
space approach, for example, seems to be computationally very
expensive. It requires, first, mapping a world description into a
configuration space, i.e., generating the configuration space
obstacles [Lozano -Perez 811. In general, this step is very time
consuming. Further, an algorithm for doing this incrementally
has not yet been developed. Second, the search must be per-
formed in a high-dimensional space. The explicit representa -
tion of the high-dimensional space can consume a large
amount of memory, although the technique of slice projections
[LozanePerez 811 reduces the memory requirements. Of
course, searching a high-dimensional space can be very time
consuming, but most approaches share this problem, whether
they represent the space explicitly or implicitly.

The approach of explicitly representing free space with
generalized cylinders [Brooks 831 seems to offer some speed in
performing path planning. However, although the technique
works well in 2-D, it is difficult to generalize to 3-D. It has
been used in 3-D by performing path searches through 2-D
slices of 3-D space [Brooks 831. Unfortunately, this technique is
useful only in limited situations, such as pick and place opera-
tions on a horizontal table.

The potential field approaches [Khatib 85, Buckley &
Leifer 851 have rather limited path planning capabilities if used
only by themselves. They suffer from being "too dumb"; they

SPIE Vol. 635 Applications of Artificial IntelligenceIll(1986) / 505

often get stuck at local minima in the potential field. However,
when combined with smarter path planning algorithms, they
should prove very useful because they offer possibilities for
real-time obstacle avoidance. We will discuss this further in
Section 10.3.

3. Using Octrees for Path Planning

In t h i s paper, we will show how an octree representation
of the world leads to fast path planning. An octree [Meagher
82, Jackins & Tanimoto 801 is a recursive decomposition of a
cubic space into subcubes. Initially, the whole space is
represented by a single node in the tree, called the root node.
I f the cubic volume is homogenous (completely filled by an
object or completely empty), then the root is not decomposed
at all, and comprises the complete description of the space.
Otherwise, it i s split into eight equal subcubes (octants), which
become the children of the root. This process continues until
all the nodes are homogeneous, or until some resolution limit is
reached. Nodes corresponding to cubic regions that are com-
pletely full are called FULL leaf nodes. Nodes corresponding to
empty regions are called EMPTY leaf nodes, and nodes
corresponding to mixed regions (non-leaf nodes) are called
MIXED nodes.

The techniques for path planning described here assume
that octrees are used to represent Cartesian %space, and that
path planning occurs in this space. The following properties of
octrees lead to fast path planning algorithms:

1.

2.

3.

4.

5.

Octrees provide a spatially -indexed representation of the
world. That is, associated with each region of bspace is
a list of objects within the region. Therefore, the objects
at each point or region in space can be very quickly
retrieved. This leads to very last collision detection algo-
rithms. During path planning, i f the hypothesized motion
of an object is represented as the volume the object
would sweep out, potential collisions can very quickly be
found.

Ideally, the search for a path should be performed in a
continuous search space. Of course, this potent,ially leads
to an infinite number of paths to be considered during

search. Octrces provide a decomposition of free space into
cubes, each of which can be treated as a single symbolic
unit (i.e., a node) in a search graph. Links are created
between two nodes only if their respective cubes are adja-
cent, In this way, the infinite search space is converted
into a finite one.

The hierarchical, multiresolution nature of octrees may be
utilizcd to improve the speed of search algorithms [Kam-
bhampati & Davis 851. The idea is to represent primarily
octants at a low resolution level as nodes in the search
graph. High resolution octants are represented only when
necessary. The resulting graph is much smaller and
search proceeds more quickly.

Eflicient algorithms exist for converting a polyhedral
object dcscribed by i t s surfaces into an octree description
[Hong 851.

Eflicient algorithms exist for incrementally modifying
octrees [Hong & Shneier 85b, Weng & Ahuja 851. These
techniques assume that a separate database of objects in
the world exists. Each object in this database has an
octree representation in the object’s coordinate system.
Incremental modifications to the world octree then consist
of rotating, translating, adding, and deleting the object
octrees.

6. Finally, octrees are often useful for tasks other than path
planning. Because they offer a useful representation of
bspace, they can serve as the output representation for
sensory interpretation algorithms [Hong & Shneier 85a,
Connolly 841, they can be used to retrieve objects or
object features lying in a given region of space, or to
solve the hidden feature problem for verification vision or
graphics display [Glassner 84, Meagher 82). The point is
that in a complete robot planning, control, and sensory
system, octrees may serve in many different kinds of
tasks [Shneier et al. 841. The effective cost of generating
the octrees thus becomes lower when compared to the
cost in systems that must generate a different description
for each task.
The primary disadvantages of octrees are, first, that they

do not provide an exact representation of objects and, second,
that they tend to require a lot of memory. The first disadvan -
tage can be overcome by using an object’s surface -based
description when highly precise motions near objects are
required. Since the nodes of the octree have pointers to objects
contained in them, retrieving the objects in a given region of
space is very fast.

The second disadvantage is more diflicult to overcome,
but techniques such as dynamically expanding the octree into
higher resolution levels only when needed, or compressing the

octree representation (Gargantini 821, may help. Although spa-
tial decompositions that are irregular [Reddy & Rubin 78,
Lozano -Perez 811 may result in smaller trees, operations on
them such as locating volume elemcnts, finding their positions,
performing translation and rotation, and generating them from
surface-based object descriptions are usually much slower.

4. NBS Path Planning Syetem

The remainder of this paper describes a fast, three-
dimensional, path planning system under development at NBS.
The current implementation assumes that the robot’s external
world is static and structured. We plan eventually to extend
the system to unstructured and dynamic worlds by incorporat -
ing sensory processing components.

The inputs to the path planner are (1) a description of
the robot, (2) a description of the robot’s external world, in
the form of a single world octree, (3) the configurations of the
robot in the start and goal states. The output of the path
planner is a piecewise linear path in bspace. Although pure
translation is currently assumed, methods for incorporating
rotation will be included in our discussion.

The path generated is always guaranteed to be collision -
free, although it is generally not the shortest such path
between the start and goal states. Finding the shortest path
requires an expensive search. Fortunately, a ”reasonably”
short path is adequate for many tasks, and such a path can
often be found quite quickly.

6. Searching for a Path
Several different search techniques are combined t o per-

form the search through the octree space. The f i rs t is
hypothesize and test, and involves hypothesizing a simple path
for the robot by generating the volume it would sweep out
during the motion. Using an algorithm to be described below,
a collision between the swepbout volume and an object in the
octree can very quickly be detected. Two kinds of simple paths
have been considered: linear paths (corresponding to simple

506 / SPIE Vol. 635 Applications of Artificial IntelligenceIll(1986)

translations) and circular paths (corresponding to simple rota- However, the minimal cost path in the search graph is always

tions). Any complex path can be approximated by an inter - found if 6, the heuristic value of the coat function at any

mixed sequence of these two simple paths. These paths are given point, is always less than the actual mimimal cost path

hypothesized by the other search techniques, described next. from the point to the goal. A search algorithm with this prw

The second search technique is hill climbing. It uses a
perty is said to be admissible [Nilsson 71). In the current

cost function whose value at any point in free space is propor -
implementation, the value of 6 at a point is the Euclidean dis-

tional t o the Euclidean distance from the point to the goal,
tance from the point to the goal.

and whose value at any point inside or on the surface of an The fourth technique we use is multiresolution grid

objcct i s infinite. The robot is then always made to move to a search. This technique offers a way of searching at a finer resu-

neighboring point whose cost is the minimum over all lution than that of the octree search space. A high resolution

neighboring points. This search technique is very fast because grid is placed within the octants of the octree, and this grid is

(1) only information local to each robot position is used in searched in a multiresolution fashion. More details will be

deciding in which dircction to move next, and (2) only a single
path leading to the robot's current position is remembered; AI1 the techniques described above are combined in an
alternative paths are not remembered and therefore not con- attempt to achieve the greatest speed in finding free paths in a
sidered. This technique is similar to the potentid field tech - variety of world configurations. The search is performed on a
nique mentioned earlier, and suffers from the same major Prob- graph initially obtained by connecting the centers of all adja-
lem: the algorithm can easily get stuck at a local minimum in cent EMPTY leaf octants in the octree. Fig. 1 shows the
the coat function, that is, a point that has a lower cost than appearance of such a graph for a qudtree example. The graph

any of i ts neighboring points. is not explicitly created before the search begins; it i s implicitly

bestf irst, treestructured search method. The technique is The basic operation of the combined search algorithm is
applied to a graph representation of the octree search space, as follows. Beginning at the start state, hill climbing search is
and it performs a global search through the graph. A search performed. I f a local rniminum i s reached, A ' search is
tree is built UP as the search progresses so that the algorithm invoked, beginning at the point at which hill climbing got
can always proceed with the path with lowest cost. Portions of stuck (see Fig. 1). The purpose of the A ' search mode is to
many alternative paths may therefore be explored before a get out of the valley around this local minimum and over a
solution path is finally found. A ' search i s therefore more peak or ridge. At this point, hill climbing may be reinvoked
computationally expensive (on average) than hill climbing. because the robot cannot return to the position at which the

goal local minimum occurred. The process of switching between the

two scarch modes continues until either the goal is reached, or
it is determined that no path to the goal exists. The two
search modes provide hypothesis paths for the hypothesize and
test technique described earlier. This is done in two ways.
First, at every node reached during the search, a linear swept
volume for the robot, is generated from the node to the goal. If
this volume does not intersect an obstacle, a solution is
obtained. Otherwise, the search proceeds as described above.

Second, in determining whether or not a path from one
node to an adjacent node in the graph i s valid, a linear swept
volume is generated between the two node positions, which are
initially assumed to be at the centers of the two octants. If no
collision with an obstacle is detected, the path is valid. Other-
wise, there s t i l l may be a path between the two octants,
although the path may not be linear and/or it may not go
from center to center. At this point, the rnultiresolution grid

J

described below.

a/'\,

The third technique we use is A ' search [Nilsson 711 -- a formed as needed during the search process.

robot1

S t a r t

path

Figure 1: lnitial search graph in which hill climbing and
A ' searches are performed. The start and goal positions
are shown in blocks 13 and 5, respectively. Hill climbing
initially finds a path through blocks 13, 10, and 11. A ' is
then invoked and finds a path through blocks 11, 9, 7,
and 2. Hill climbing is then reinvoked and finds a path
through blocks 2, 3, 4, and 5. As indicated in the text, a
swepbvolume path will actually be generated from block
2 to the goal, thus eliminating the need to use hill climb
ing from blocks 2 to 5. Also, due to multiresolution grid
search, the actual final path will not necessarily proceed
from center to center of blocks as shown here. See Fig. 2
for how the path might be altered.

J

poss ib le

SPIE Vol. 635 Applications of Artificial IntelligenceIll(1986J/ 507

search mentioned above is invoked. A free path for the robot
may be found by searching on a high-resolution grid placed
inside the two octants. A hill climbing search from center to
center of the two octants i s performed on this grid in a mul-
tiresolution fashion. An example of this is shown in Fig. 2,
which depicts block 1-3, 6-9, 10, and 11 of Fig. 1. The robot
shown in block 10 cannot move to the center points of either
blocks 8 or 9 without a collision. In order to navigate through
the passage formed by blocks 6-9, the robot must move to a
non-center point in one of these blocks. Furthermore, the
robot may not be able to perform this move along a single
linear path; it may require a piecewise linear path such as that
indicated by the dashed line in Fig. 2. The high-resolution grid
placed inside the octants provides the ability to find such a
path.

8. Obtaining Succeseor Nodes During Search

As described above, the search graph is implicitly formed
as needed during the search. This occurs by dynamically
finding the neighbors, or 8uccessor~ [Nilsson 711, of a node in
the graph when it is visited. Let n be the current node visited.
A successor node, ai , is a point contained in an EMPTY
octant adjacent to the octant represented by n. Two octants
are adjacent if a face of one lies against a face of the other.
Let d(m) be the cost at any node rn (for hill climbing). To
obtain a successor node during hill climbing mode, the follow-
ing steps are taken.

1. Obtain all si such that
(a) 3, represents a leaf octant that is adjacent to the

(b) the octant of u; is EMPTY, and

octant of n,

(c) d(3,)<d(n), where d(s,) is measured at the center

2. If the set {a,)= NULL, a local minimum has been

3. Otherwise, set p to the potential successor 8, with
minimum d.

4. I f there is a free path from the octant of n to the octant
of p , p i s the successor node. The technique used to find
such a free path involves multiresolution grid search,
described in detail below.

of the octant of 8, .

reached at node n, so exit.

5. Otherwise, remove p from (8, }, and go to step 2.

During A l search mode, there will, in general, be more
than one succetmor for each node. A search tree is generated
during the search wherein the successors of each node form the
children in the tree. The node 8, i s a successor of node n if
1. 3, represents a leaf octant that is adjacent to the octant

of n,

2. the octant of 3, is EMPTY,
3. successors of 8, have not yet been obtained during the

current invocation of A l,**
4. there i s a free path from the octant of n to the octant of

8, . (Again, this i s obtained using multiresolution grid
search; see below.)

7. Multiresolution Grid Search

This sectign describes the algorithm used in multiresolu -

**Since the conriatency amurnpiion for is satisfied jNilsson 711, a node
need never be reexamined once i t s succewrs have been obtained.

1.

2.

3.

4.

tion grid search. Suppose n, and n2 are two search nodes
representing the adjacent leaf octants 0, and 02, respectively.
We say that n2 is a valid 8ucce880r of nI if a free path for the
robot exists from the initial point in 0, to some point in 02,
and the path lies completely within the two octants. Let & be
the initial starting point in 01, and let 3c be the center point
of 02. Let d(f ,s) be the distance between two points a and
b . The following algorithm determines whether n2 is a valid
successor of n,. I f it is, the points on the path between the two
octants is returned in the list pathpoints. The algorithm seeks
the path using hill climbing search on a multiresolution grid.

-+

Set f to f8

Place ij in pathpoints .
I f there is a linear free path from 7 to fc , then n2 is a
valid successor of n,. So add PC to pathpoints and exit.

5.

6.

7.

8.

9.

10.

11.

12.

Otherwise, obtain the translation vector ? from f to Fc.
Then set the grid increment valueI to the maximum of
I 7', I , I p, 1 , and 1 Yz I . This is the coarsest resolution

level of the grid used in finding a neighbor of point f. Set
M to the (a priori) minimum allowable grid increment.
This is the finest resolution level of the grid.

IfI<M, go to step 12.

Otherwise, obtain the set {q,) of all neighboring points of
f by incrementing in the x, y, and z directions by the
valueI.This step dynamically generates the multiresolu -
tion grid. The six points in (3) are-

q,=f+I i , ?*=f-Ii,

f3=f+IG,ifr=P-Ii,
qs=f+12, fa=f-Ii.

Remove from {g} any point f such that

(a) f is not inside 0, or 02, or

(b) d(7,f C)2d(f,F c).
I f {&}= NULL, then a local minimum has been reached,
i.e., no neighboring point of 3 (at the current grid resolu-
tion) is closer to ft than 7. So setI to 1/2, and go to
step 5. The current step has determined that the current
grid resolution is too coarse. The grid increment is there-
fore halved, and neighboring points of f are again
sought, but on a finer resolution grid.
Otherwise, choose the point F in (3) with minimum
d V , K 1.
If there is not a linear free path from f to t, remove 7
from {q, }, and go to step 8.

Otherwise, there is a linear free path from f to 7. If ri i s
inside 02, then n2 is a valid successor of n,. So add f to
pathpoints and exit. We do not need to extend the path
further towards Fc.IF7 is not inside 02, then set f to 7,
and go to step 2. An attempt must be made to further
extend the path toward @,.
At this point, the value of the grid increment I is less
than M, the finest resolution level. This implies that a
free path to 0, has not been found. So n2 is not a valid
successor of n,. Exit with failure.

8. Primitive Shapea

Thus far, we have discussed how the objects in the
robot's world are represented in the form of a single world
octree. In order to detect potential collisions, the swept volume
representing the robot's path must also be represented.

508 / SPIE Vol. 635 Applications of Artificial IntelligenceIll(1986)

In our approach, the articulate parts of the robot, as well
as the swept -volume paths of the robot, are approximated by a
set of primitive shapes. Because the robot is always fully con-
tained in i t s approximating shapes, a free path for the shapes
is always a free path for the robot. The converse is not true.

There are three requirements for defining a primitive
shape. The first is that computing whether or not the shape
intersects an object in the octree should be fast. Our primitive
shapes are therefore defined in terms of a spine - either a
simple curve or simple surface segment -- and a rad& -- a
single extent outward from the spine that defines the shape's
surface. By representing octants in the octree as spheres, the
intersection test merely involves determining the shortest dis-
tance from the center of a sphere to the spine of the primitive
shape, and checking whether or not this distance exceeds the
sum of the radii of the sphere and shape. More of this will be
described below.

The second requirement for a primitive shape is that it
should be a reasonable approximation to a part of the robot or
a swept volume. The third requirement is that generating
primitive shapes used to represent sweptvolume paths should
be very fast. This is because the particular shape must be
dynamically generated during search. Many of the shapes are
therefore defined as translational or rotational sweeps of some
other primitive shape.

8
(a) Sphere

(c) Translation -swept
cylsphere

Some primitive shapes we have considered are the follow-
ing:

1.

2.

3.

4.

5.

SDhere (Fig. 38). Defined by a center point and a radius.

Cvhhere (Fig. 3b). The volume swept out by linear
translation of a sphere. Defined by the radius of the
sphere and the two end points of the line segment form-
ing the spine.

Translation -sweot cvhhere (Fig. 3c). The volume swept
out by linear translation of a cylsphere. Defined by the
radius of the cylsphere and the four end points of the
parallelogram forming the spine.

Rotation -sweDt cvhhere , The volume swept out by rota-
tion of a cylsphere about an axis intersecting and perpen-
dicular to i t s spine. There are two types. For type 1 (Fig.
3d), the rotation angle is less than 180 degrees; for type 2
(Fig. 3e), the angle i s greater than 180 degrees. Type 1 is
defined by the radius of the cylsphere and the two wedge
slices meeting at their apexes that form the spine. Type 2
is defined by the radius of the cylsphere and the pie seg-
ment that forms the spine.

Torus section (Fig. 3f). The volume swept out by rotation
of a primitive shape about an axis that does not intersect
the shape.

(b) Cylsphere

(d) Ro tat ion-swep t
cylsphere o f type 1

h

(e) Rotation -swept cylsphere
of type 2

Figure 3: Some primitive shapes.

(f) Torus s e c t i o n

SPIE Vol. 635 Applications of Artificiallntelligence 111(1986) / 509

9. Collision Deteetion

The following algorithm is used to determine whether or
not a primitive shape intersects any obstacles represented in
the world octree. First, associated with each swept -volume
primitive shape is a set of curves within i ts volume that follow
the sweep used to form the shape. If the shape is formed by
translational sweep, the curves are straight line segments (Fig.
4a). I f the shape is formed by rotational sweep, the curves are
circular arc segments (Fig. 4b). The curves within the volume
of the shape are individually tested to see if any intersects an
obstacle. This test is extremely fast (Glassner 84). If there is
an intersection, then of course the shape also intersects the
obstacle. If there is no intersection, a more detailed test must
be performed on the shape, for some other part of the shape
may sti l l intersect an obstacle.

The more detailed test involves performing a breadth -
first traversal of the octree, and checking for an intersection
between each FULL node and the primitive shape. Using a
breadth -first, rather than depth-first, traversal insures that if
there is a FULL node at a low resolution level that intersects
the shape, it will be found quickly, before much of the rest of
the tree is examined.

To avoid visiting and checking for intersection with too
many unnecessary nodes in the octree, the highest resolution
octant totally containing the bounding box of the primitive
shape is initially found (Fig. 5). The breadth -first traversal
then occurs within the subtree rooted at this octant. In d d i -
lion, the children of a MIXED node are not visited unless the
node overlaps the bounding box of the primitive shape.

ca) (6)
Figure 4: (a) Straight -line segments inside volume. (b)
Circular arc segments inside volume.

P r im i t i ve shape
1

When a FULL node is reached during the traversal, the
following tests are performed.

1. I f the octant and bounding box of the primitive shape do
not overlap, there is no intersection.

2. Let us define the outer sphere as the smallest sphere that
completely contains the octant, and the inner sphere as
the largest sphere contained completely within the octant
(Fig. 6). If the primitive shape intersects the inner
sphere, there is an intersection with the octant [Hong &
Shneier 85b].

3. I f the shape does not intersect the outer sphere, there is
no intersection with the octant.

4. If the shape intersects the outer but not the inner sphere,
then

(a) if the octant is at the highest resolution level,

(b) otherwise, divide the octant into 8 suboctants, and

assume an intersection,

for each suboctant, proceed from step 1.

10. Improving the System

This section discusses three ways in which our current
system can be improved. The first two involve obtaining
greater speed using the approaches of knowledgebased path
planning and multiresolution search. The third involves deal-
ing with dynamic worlds.

I highest reso lu t ion
block t o t a l l y conta in ing/?, primit ive shape

-
Figure 5

10.1. Knowledge-Based Path Planning
The system described here i s very general in the sense

that it uses a search algorithm that is independent of the task
domain. For example, hill climbing and A ' are general search
techniques. The system could be speeded up considerably in
many domains i f task-specific knowledge were used. One
method involves using such knowledge to specify intermediate
points on the path, or to specify intermediate directions in
which to search. For example, many pick and place tasks can
be satisfactorily carried out by a robot by moving up vertically
(after grasping the object), then moving across horizontally,
and then down vertically. If intermediate directions in the
motion were specified (i.e., first move up, then over, then
down), the search process would often be much faster than a
general search from start to goal. This is because there are
often more obstacles on the table than high above it, and the
general search approach would try to find a path in between
these obstacles.

ou te r sphere

inner sphere

FLTLL octant

Figure 6

510 /SPlE Vol. 635 Applications of Artificial IntelligenceIll(1986)

10.2. Multiresolution Search

It is often useful to impose a multiresolution structure on
the search space and then apply a search method that takcs
advantage of this structure. Such a search method generally
consists of searching at a coarse resolution level whenever
feasible, and searching at a fine level only when necessary. The
advantage of this is that there are fewer search-spsee elements
at the coarse level, resulting in faster search time.

In the context of our robot path planning system, a mul-
tiresolution structure can be imposed on several components of
the search space, including the following.

1.

2.

3.

Translation mace. This i s the space of all possible x, y, I
positions of the robot. Two types of multiresolution
structures may be used herc. The first is the octree itself,
and the second is the multiresolution grid placed within
the leaf octants, as described earlier. These two structures
provide a multiresolution subdivision of &space [Kam-
bhampati & Davis 851.

Rotation soace. This is the space of all possible rotational
positions of the rohot. A technique similar to the mul-
tiresolution grid can be applied here, wherein increments
between angular positions of the robot are dynamically
determined during the search process in a multiresolution
fashion.
J&&& descrbtion. The robot description is used to
hypothesize swept -volume paths which are tested during
search. The robot may be described in a multiresolution
fashion, wherein coarse levels of description involve fewcr
articulate parts, fewer primitive shapes, and fewer
degrees of freedom in motion than fine levels (Marr &
Nishihara 781.

In regions where the robot is far from obstacles, the path- . -
search may be performed at coarse levels of these various mul -
tiresolution structures. This means that the search process
need only consider (1) low resolution EMPTY octants of the
octree (high resolution EMPTY octants may be treated as
FULL), (2) coarse grid increments in the multiresolution grid,
(3) coarse rotational increments in rotation space, and (4)
coarse levels of the robot description. The search needs to con-
sider fine levels of the multiresolution structures only when the
robot is moving near obstacles.

10.3. Dynamic Worlds

There are two important issues when dealing with
dynamic worlds. The first is how to find out that a change in
the world has occurred. The second is how to modify the
robot's motion to accomodate the change. The first issue
involves sensory interpretation, a very large topic which will
not be discussed here. The second issue involves many topics,
but a very important one is real-time collision avoidance
between the robot and a moving object. After the collision has
been avoided, either the initial path can be continued or a new
path can be generated. The continuation or regeneration of a
path need not occur in real time, although of course speed is
important.

Real-time collision avoidance based on the potential field
concept has been demonstrated to be quite effective [Khatib
851. This type of technique is useful for avoiding imminent col-
lisions. However, to avoid potential collisions further along the
planned path, the collision detection algorithms described ear-
lier in this paper can be used. If the planned path is stored in
terms of swept volumes of the robot's motion, then any object

that moves into the path can be detected, and appropriate
path changes can be sought well in advance of the collision
point.

Acknowledgements

The following people have greatly contributed to this
work through commcnts and discussions: Tony Barbera, John
Fiala, Len Haynes, Tsai Hong, Ted Ilopp, Ernie Kent, Ron
Lumia, Graham Morris, Don Myers, Mike Shneier, and John
Wilkes.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Baer, A., Eastman, C., and Henrion, M. "Geometric
modelling: a survey. " Computer -Aided Design, 11, 1979,
253-272.

Brooks, R.A. "Symbolic reasoning among 3-D models
and 2-D images. " Artificial Intelligence, 17, 1981, 285
348.

Brooks, R.A. "Planning collision -free motions for pick-
and-palce operations. " The International Journal of
Robotics Research, Vol. 2, No. 4, Winter 1983, 19-44.

Buckley, C.E. and Leifer, L.J. "A proximity metric for
continuum path planning." Proc. Ninth International
Joint Conf. on Artificial Intelligence, LQS Angela, CA,
August 1985, 1096-1102.

Canny, J. " A Voronoi method for the pianemovers
problem." IEEE International Con/. on Robotics and
Automation, St. Louis, Missouri, March 1985, 530-535.

Connolly, C.I. "Cumulative generation of octree models
from range data." Proc. IEEE International Conf. on
Robotics, Atlanta, GA, March 1984, 2532.

Gargantini, 1. "Linear octtrees for fast processing of
three-dimensional objects. " Computer Graphics and
Image Processing, 20, 1982, 365-374.

Glassner, AS. "Space subdivision for fast ray tracing."
IEEE Computer Graphics and Applications 4 10, October
1984, 1522.

Ilong, T.-€1.Personal communication, 1985.

Hong, T.-€1.and Shneier, M.O. "Incrementally construct -
ing a spatial representation using a moving camera."
Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, San Francisco, CA, June 1985a, 591-596.

Hong, T.-H. and Shneier, M.O. "Rotation and translation
of objects represented by octrees." Robot Systems Divi -
sion, National Bureau of Standards, Gaithersburg, MD,
October 1985b.

Jackins, C.L. and Tanirnoto, S.L. "Octtrees and their use
in representing three-dimensional objects. " Computer
Graphics and Image Processing 14, 1980, 249270.

SPIE Vol. 635 Applications of Artificiallntelligence 111(19861 / 511

13. Kambhampati, S. and Davis, L. S. "Multireaolution path
planning for mobile robots. " Technical Report 127,
Center for Automation Research, University of Maryland,
College Park, MD, May 1985.

14. Khatib, 0. "Real-time obstacle avoidance for manipuls -
tors and mobile robots. " IEEE International Conj. on
Robotics and Automation, St. Louis, Missouri, March
1985,500505.

15. Lozano -Perez, T. "Automatic planning of manipulator
transfer movements. " IEEE Tram. on System, Man, and
Cgbernetics, Vol. SMC-11, 1981, 681-698.

16. Marr, D. and Nishihara, H.K. "Representation and recog-
nition of the spatial organization of three-dimensional
shapes." Proc. Royd Society of London B 200, 1978, 269-
294.

17. Meagher, D. "Geometric modeling using octree encoding."
Computer Graphics and Image Processing, 19, 1982, 129-
147.

18. Nilason, N.J. Problem -Solving Methods in Artificial Intel-
ligence. McGraw -Hill, New York, 1971.

19. Reddy, D.R. and Rubin, S. "Repreaentation of three-
dimensional objects. " Technical Report CMU-CS-78-113,
Department of Computer Science, Carnegie -Mellon
University, Pittsburgh, PA, 1978.

20. Requicha, A.A.G. "Representations for rigid solids:
theory, methods, and systems." Computing Surveys,
12(4), 1980, 437-464.

21. Ruff, R. and Ahuja, N. "Path planning in a three dimen-
sional environment. " Proc. Seventh Internationd Con!.
on Pattern Recognition, Montreal, Canada, July 1984,
188-191.

22. Shneier, M., Kent, E., and Mansbach, P. "Representing
workspace and model knowledge for a robot with mobile
sensors." Proc. Seventh International Conj. on Pattern
Recognition, Montreal, Canada, July 1984, 199-202.

23. Srihari, S.N. "Representation of three-dimensional digital
images." Computing Surveys, Vol. 13, No. 4, 1981, 399-
424.

24. Weng, J. and Ahuja, N. "Octree representation of objects
in arbitrary motion." Proc. IEEE Cobjerence on Com-
puter Viaion and Pattern Recognition, San Francisco, CA,
June 1985, 524-529.

512 / SPlE Vol. 635 Applications of Artificial IntelligenceIll(1986)

